skip to main content


Search for: All records

Creators/Authors contains: "Milli, Julien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present 870μm Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris diskβPic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3σlevel when averaging the emission across the entire disk. The corresponding polarization fraction isPfrac= 0.51% ± 0.19%. The polarization position angleχis aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field (B-RAT) or with respect to the anisotropy in the radiation field (k-RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via bothk-RAT andB-RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find thatk-RAT is the likely mechanism producing the polarized emission inβPic. A comparison of timescales relevant to grain alignment also yields the same conclusion. For dust grains with realistic aspect ratios (i.e.,s> 1.1), our models imply low grain-alignment efficiencies.

     
    more » « less
  2. null (Ed.)